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ABSTRACT

Variational problems which are invariant under a group

of symmetries often possess multiple solutions. This paper studies

the effect of perturbations which are not small and which destroy the

symmetry for two classes of such problems and shows how multiple solutions

persist despite the perturbation.
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SIGNIFICANCE AND EXPLANATION

Variational problems which are invariant under a symmetry

group often have multiple solutions. If the resulting Euler

equations are changed by adding an inhomogeneous forcing term,

a new functional results which may no longer possesses the

symmetries of the original problem. This paper shows how

multiple solutions persist for the modified problem for a class

of semilinear elliptic equations and a class of forced second

order Hamiltonian systems.
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Multiple critical points of perturbed symmetric

functionals.

Paul Rabinowitz

j During the past fifteen years there has been a considerable amount of

research on the role of symmetry in obtaining multiple critical points of

symmetric functionals both in an abstract setting and in applications to

ordinary and partial differential equations. In particular problems of the

* form r n _(a 1 (x) u~ + cx)u=p (x.u) x-E-

(0.1) ijl=l c~u Xi

I~

have been studied where L is uniformly elliptic with e. g. C 2 coefficients,

nl c Rn is a bounded domain with a smooth boundary, and p is odd

in u Under appropriate hypotheses on p (x, in particular

more rapid growth than linear as t-eit has been shown that

(0.1) possesses an unbounded sequence of solutions [1-6]. Similar

existence statements have been obtained for periodic solutions of second

order Hailtonian systems of ordinary differential equations:

(0.2) 1+ V(q) 0

where q= a q and V C 1 RnR)y. Indeed ithas been

shown that if V grows at an appropriate superquadratic rate, then for

any T> 0, (0. 2) possesses an unbounded sequence of T periodic

solutions [7-H8 .s s a dr er C at N
Sponsored byte United States Army under Contract No. DAAG29-80-
C-0041 and the Office of Naval Research under Contract No. N00014-
76-C-0300.



Problems (0.1) and (0.2) each possess a natural symmetry.

Namely (0.1) is the Euler equation obtained from

(0.3) EL ( Z L j (x) u.. u + c (X) u P -(x u)] dx

where P, the primative of p, is even in u and therefore

the functional is invariant under the z.2 symmetry u -- -u.

Likewise taking e. g. T = 21r , we see (0.2) is the Euler equation

of the functional

(0.4) f [Z-Elqi -v(q)] dt

defined on the class of 2w periodic functions. If q (t) -- ' q (t+e)

for any e o R, the functional is unchanged. Thus (0.4) has

a natural R mod [0,2w ] or S symmetry.

An open question for problems like (0. 1), (0. 2) has been the effect

of destroying the above symmetries by perturbing the equation, e. g. by

adding an inhomogeneous term f (x) to the right based side of (0. 1)

or a 2w periodic n-vector p (t) to the right hand side of (0.2).

There has been some progress in this direction during the past few months

due to Bahri and Berestycki[9] , Struwe [10], Dong and Lt [11], and

Bahri [12]. In [9] and [10] , the authors independently show that

Lu = p(x,u)+f(x), xc 0
(0.5)

possesses an unbounded sequence of weak solutions provided that f c L2 ( (0)

-2-
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and p satisfies more stringent conditions than are required for the

existence of solutions of (0. 1) In this paper we shall show how some

of the ideas from [5] in conjunction with those of [9] and [10] can

be used to get somewhat better existence results for (0. 5). Moreover

closely related arguments allow us to treat perturbations of (0.2) of the

form

(0.6) q + V'(q) cp(t)

Bahri and Berestycki [13] have also recently announced related results

for (0. 6).
-1

In §1, (0.5) will be treated and (0. 6) will be handled in §2.

An appendix contains some topological results required for the study of (0. 6).

We are indebted to Ed Fadell and Sufian Husseini for several helpful

conversations concerning these topological matters.

-3

;-3-

S ., .- -



§ 1. The semilinear elliptic case.

We begin by studing

( p(x,u)+f(x), xC n

u O, xC CIO

where L and l are in the introduction. We assume p satisfies:

(pI) P C C(?!X R, R)

(P2 ) There are constants a1 , a > 0 such that

n+2

where =<s<n-- if n> 2 and s is unrestricted

if n= 1, 2,

(p 3) There are constants 2 • 2 and > 0 such that

-0 O<ILP(, )= fe p(x,t)dt s ep(x, )
0

for - "

(p 4 ) p(x,-t) =-p(x,)

Under hypotheses (pl) - (p 4), if f 0, it is known that

(1.1) possesses an unbounded sequence of weak solutions which can

be obtained as critical points of a corresponding functional by means of minimax

methods. We shall show that the same is true for (1. 1) for arbitrary

f E L2  provided that s satisfies the more stringent condition

-4-
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(1.) (n+2) -(n- 2)s 
:~ n(s - 1) -

For j = s + 1, (1.2) reduces to the assumption made in [9] and [10].

In (9] and [10] somewhat stronger versions of [Pl] and [P 3 ] also

are needed as well as the requirement that p behave like a positive function

of x times a pure power of at infinity.

For future reference we note that (p 3) implies there are constants

a3 a4 a 5  such that

(1. 3) Q (p (x,. ) +a 3)> P (x, e)+a4 ata5

for all R fl. Corresponding to (1.-') we have the functional
n

(1.4) I(u)=f[ ( f Z a(x)u x ux +c(x)u 2 ) -P(x,u)-f(x)u]dx

i , I i u j

Letting E=W1 2 (a) where the norm in E is

0  n

ull = (f Z at j (x)u u dx)I/2
i , j=l i .t

hypotheses (pl) - (p?) and standard results imply I E CI(E, R)

(provided f E L2 ( 0))

The main result in this section is:

Theorem 1, 5: Suppose p satisfies (pl) - (p4 ), f E L(2 (Q,

and s satisfies (1. 2) . Then I has an unbounded sequence of

critical values.

-5-
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The corresponding critical points form an unbounded sequence of

weak solutions of (1. 1) . Under additional regularity assumptions on p

and f (e.g. p and f H5lder continuous in their arguments),

standard regularity results imply these weak solutions are classical solutions

of (1. 1) . After proving Theorem 1. 5, a mild generalization of recent

work of Dong and I [ 11] in which f is allowed to depend also on u

will be mentioned.

In the course of the proof of Theorem 1. 5, we will obtain a

minimax characterization of critical values of I albeit not a completely

satisfactory one. In [9] and [10] , the fact that any solution of

(1.1) lies on the set of w in E such that

n
(1.6) fj( E a,,(x)w~ w~ +c(x)w )dx=f w(p(x,w)+f(x))dx

i, j =

is exploited. On this set I becomes

(1.7) I(u) f (f uup(x,u)-P(x,u) - f(x)u)dx

which is bounded from below. (See also [1] and [ 2] ). We will

work with an indefinite functional. However for technical reasons I will

be replaced by a modified functional I. By way of motivation for

the modification, the following lemma provides some a prior bounds for a

critical point of I in terms of the corresponding critical value. In

what follows a i , aj repeatedly denote positive constants .

-6-
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Lemma 1.8: Suppose u is a critical point of I Then there is a

constant a6 depending on jO f 1L such that

(1.9) f (P(x,u)+a 4 )dx sf (up(xu)+ a 3 )dxSa 6(((u)) +1)1/.

Proof: Let I'(u) denote the Frechet derivative of u At a critical

point of I we have

(1.10) I(u) = I(u) - I (u)u : ( ( x 3 )dx Tuf 2  uL2 7

via (1. 3). Using the fact that z > 2 and the H81der and Young

inequalities we see for any E > 0,

(1. 11) I(u)- a 8  (up(xu) +a 3 )dx-a 9 -E u OL - )(I f LV

V-l -l
where v +V 1 = 1 and 1(3) - as e-* 0. Choosing

E so that 2E = .a 5 a 8 , (1.3), (1. 11) and the Schwarz inequality

yield (1.9)

Remark 1. Z The inequality (1. 11) combined with I'( u )u = 0

leads to a bound for 1i u 11 in terms of I(u). However such an

estimate will not be needed later.

To define the modified functional J, let x E Cc* (R, R) such

that x (t)= 1 for t !- I, x(t)- 0 for t > 2 and

-2 <x' < 0 for t 4 (1,2). For U E E, set

-7-

*, I i , F m ,



J (u)2a 2u) +1)1/2 and 4(u) =(y, (u)'f f(P(x,u) +a
6 (4) dL )

Let supp p denote the support of p.

Lemma 1 .13: If u 1 supp 4, then

(1.14) If fudxI S al(jI(u)j +1)

where aI  depends on f

Proof: By the Schwarz and H81der inequalities and (1. 3), for all u c E

(1.15) If fudxI < jfilulll 2 Sa-u,. Ii " 3(f(P(.u)+a4 )dx)

If further u E supp t,

(1.16) f (P(x,u)+ a 4 )dx : 4a 6 (1 2 (u) + 1)I/ 2 S a 3 (1I(u) + 1)

so (1. 14) follows from (1. 15) - (1. 16)

Now set

n (
(1.17) J(u) f [ E a a(X)u + c (x)u ) - P (x, u) - 4 (u) f (x) u dx

,J=1 x

The main reason for Introducing J is the following estimate which

holds for j but not for I.

Lemma 1. 18: There is a constant depending on IIf L such

that for all u E E:

-8-
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(1.19) JJ(u) - J(-u)l S Pl(jJ(u)j + 1)

Proof: By (1. 17) and (p4)1,

(1.20) j(u)- I(-u)j = (i{u)+L(-u)) f fu dx

Thus by Lemma 1.13,

(1.21) (u)jf fu dxI s a 1 (-u) (jI(u) l + 1)

Since by (1.4) and (1.17),

(1.22) jI(u)l - Jj(u)l +2jf fudxj

(1. 21) implies that

(1.2z3) tp(-u)lf fudxj s a p(-u) (IJ(u)l x/  + if fu dxj 1 ' + 1)

Thus by Young' s inequality as in (1. 11), the fu term on the right hand

side of (1. 23) can be absorbed by the left hand side . A corresponding

estimate for the ip (u) term in (1. 20) then yields (1. 19).

Remark 1.24: Although I (u) does not satisfy (1. 19) for all u E E,

it does for all solutions of (1. 1). However we are unable to exploit this

fact directly.

We shall show that large critical values of j are critical values of

I . First another technical lemma is needed.

-9-



Lemma 1. 251: There are constants M0 a 0 > 0 and depending on

Of L2 such that whenever M a M0 , J (u) 2- M and u iE supp t,

then I(u) :- aoMo

Proof: Since by (1. 4) and (L 17)

(1.26) 1(u) - 1(u) - jf fudxj

if u E supp t, by (1.26) and (L14)

(1.27) (u)+ a uu) - al-

for M0  large enough. If I (u) s 0,
-i 0 v -

1 ilui__<1l.uI/p> M-+Iru
(1.28) -v- + I (U L I(u) > + i)

V -2

which is impossible if Mo > 2a V-1 which we can assume to be the

case. Therefore I (u) > 0 and

I (u) >M or I(u)-a (M (4I)IL

which implies the Lemma since I > 2.

Now we can prove

Lemma 1. 29: There is a constant M 1 > 0 such that 1(u) _ M1

and t(u) = 0 implies that J(u) = I(u) and I'(u)= 0.

Proof It suffices to show that (u) = 1 and '(u) = 0. By

the definition of i, this will be the case if

-10-
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(1.30) J(u)-l f (P (x, u)l+a4)dx s 1

which we will verify. Note that
n

(u)u =f [=a(x)ux +c(x)u -up(xu)
~(1. 31)(.3)- ((u) + P' (u)u) fu ]dx

where

1'(u)u=x(J(u)'lf (P(x,u)+a )dx) .9(u)2 [.(u) f up (x, u) dx

-(2a 6 )(f (P(xu)+a4 )dx) .(u) I(u)I'(u)u].

Regrouping terms shows that

n
J'(u)u = (1+TI(u)) f Z l atj (x)ux u + c (x)ul2 dx

-(l+'ru))f up(x,u) dx - ((u) + T(U)) fudx

where

T (U)-X (see)(2a 6 )2 J(u) 3 I(u) f(P(x, u) a4)dxf fudx

T 2(u) ... [J(u)l1 fudx] +TI(U )

Form

J(U) - 2(1 +TIM J'(u)u

If Tl(u) = T2 (u) = 0 and . (u) = 1 we are precisely in the situation

of (1.10) so (1.30) reduces to (1.9) . If Tl(u) and T 2 (u) are

it -ll-
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sufficiently small, the estimates of Lemma 1.8 carry over to this case at

the expense of the factor a6  in (1. 9) being replaced by Za6 . But

that gives (1. 30). Hence the Lemma follows once we show

T1 (u), T 2 (u) -- 0 as M1 -4 e.

Simple estimates show

(1,32) IT l(u)IS I jX(.)I 4a6 J(u) " if fudxI.
(0

If u supp Ji T(u ) = 0 Otherwise, by Lemmas 1.13 and 1.25,

(1.33) IT(uj i-(1.3)]T(u)] I a2 J (uf' a3(Ml+l)1 ,

-Iwhich ges to 0 -as 1 . The form of T2  shows

T2 (u) also --* 0 as M w

*VBy Lemma 1. 29 to prove Theorem 1. 5, it suffices to show I has

an unbounded sequence of critical values. To begin that program, another

technical result is required. let Ac = {u e E IJ(u) s c}. We say

satisfies the Palais-Smale condition (PS) if whenever a sequence (uM )

satisfies J (um ) is uniformly bounded and J' ( um ) --b 0, then

(um ) is precompact.

Lemma 1. 34: J E CI(E, R) and there is a constant M2 > 0 such

that j satisfies (PS) on AM
M2

Proof: Since p satisfies (pl), (p?), I e CI( FR) . (See e.g. [14] )

Since XE C-, (pl), (p2 ) further imply tb and therefore c € C (E,R) . To verify

-12-



(PS), we argue somewhat as in Lemma 1. 29. Suppose (urm ) C E

with M 2 J (um ) : K and '(um ) -- 0. Then for all large m,

PjU. +K-> I (u m ) - P (um) um

n
=(.L~pl+T~uaij(x)u u +cum)dx

(1. 35) i, J= 1

+ p(14T 2NO u p (X p ) dx- f P(x, ) dx

+ +[p( (um)+ Tl(Uml)"- (Um)] f fu dx

where p is free for the moment* Thus by (p3 ),

p 0 Uml + K" > (1 - p (I* + T](u m )})) 0 utah z + (po(l+Tz(urn)) .- 1) (P(Xu m
2I IIK 1  'lT' '''

+ a4) dx

(1. 36) a2 - (P (I+Tl(um)) + 1) IfJJu 1! 2
L DulL2

, -a 311 Um 11~ 2
- c~jj IiLZ

For M2  sufficiently large and therefore T1, T2  sufficiently small,

by (p3) wecanchoose pc (,l2-) and e > 0 such that

(13)1 1(1.37) 2(l+Tl(Um)) • P+ (1 +T2(U m ))

uniformly in m . Hence (1.36) and (1. 3) show

(1.38) pUUmo +K- smuj + L a5  e - '2 a 40 Uml a O30jUml 22L°

Using the H61der and Young inequalities again as in (1. 11) we get

-13-
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(1.39) PilUmil +K 2t eu z + a umil -. iluml

which implies {u m  is bounded in E .

Since

(1.40) J(u)= (1+Tl(Um ))u m - P (um )
!m

where p is compact - see e.g. [5] - for M large enough2
lTl(um) :5 and therefore (ur ) bounded and J(um) 0

-1implies (1+T 1(u r)) p(um) converges along a subsequence. Hence

(1.40) shows (um) doesalsoand (PS) isverified.

Now we can show J has an unbounded sequence of critical values.

Let 0 < 2 S " -  "" X denote the eigenvalues of

(L-c)v= Xv, x C
-- (1.41)

v =0 , x EC

and vl, v., denote corresponding eigenfunctions normalized such

that l1vk . Let E k span {vl, ,Vk and its

orthogonal complement. By (1. 3) there is an Rk > 0 such that

JIE k - 0 if DUg - R k Let BR denote the closed ball

of radius R in E, Dk= BRk n Ek , and

(1.42) rk= {hE C(DkE) I h is odd and h(u) = u if huB = Rk}•

Define

(1.43) bk= inf max J(h(u)), k E IN.
hErk uc Dk

-14-
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If f 0 and J is even, it was essentially shown in [5] that

the numbers bk are critical values of J. If f g 0 , that need

not be the case However we will use these numbers as the basis for

a comparison argument to prove Theorem 1. 5. First it will be shown

that bk -=e as k--

Lemma 1,44: Forall k E IN, p < Rk, and h e rk,

(1.45) h(Dk) n aBp n E-l "

* iq -l(B )
Proof: Let h c rk. Consider h (B . Since h is

continuous, this is a neighborhood of 0 in E k * Let

denote the component of h- I (B ) which contains 0 Then Oc Dk ,

is symmetric with respect to the origin, i. e. u E 0 implies -u E 0,.P ± denote
and 11h(u)JI = P on 8. Let Pk-l' k- d

respectively the orthogonal projectors of E onto EkI, Ek.I  so

h(u) = Pk h(u) +P-I h(u) for u E E Since Pk lh E C(80, Ekl)

and is an odd function, by one of the versions of the Borsuk-Ulam Theorem

[16] , Pklh has a zero u on 8 e. Hence h (u)=

k-l h (u ) E aB f E and the proof is complete~k-lhU B P Ek-l"

Lemma 1, 46: There are constants 2 > 0 and k0  IN depending

on O I1 2  such that for all k a k0 ,
L n+2 - (n-2)s

(1. 47) bk >  
2 k

-15-
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Proof: Let h c rk and P < Rk . By lemma 1. 44, there is a

W h (Dk)fl.8B n E,. Therefore

(1.48) max J(h(u)) a 3(w) a nf (u)
U c Dk u 8B nE-

Let u c 8B n El Then by ( and some simple estimates:

(1.49) P2 -a2 11lu 0u- cf 2
u S+14 " 2 2.LL L L

By the Gagliardo-Nirenberg inequality [17]

(1.50) ull s+l a 711L

forall uE E where 2a= n(s -1)(s +l) 1 . Moreover if u c

(1.51) JUJJL2  -S xk l  Jul.

Substituting (1. 50) - (1. 51) into (1. 49) yields

(1-a)(s+l)
(11 12 a 2  2 2-- s+1(1.52) j(u)> a- - --TkX P 3 k P aG4

1
if illz '

~fiz2k p "

Choose k0  so large that 4 a2 -5 kk  and P =P k so that

1-a s+1
(1.53) 1k= I )k ='  ) .

Therefore
1

(1.54) j(
8 )~~.k Ojf 11 2k k 4

-16-
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The asymptotic distribution of the eigenvalues of (1. 41) is such that for

large k,

(1.55) k a k

for a5 independent of k C18] Combining (1. 54) -(1. 55) then gives the lemma.

To construct a sequence of critical values of J, another set of

comparison values first must be defined. Let

Uk={U=tvk+l+wIt'E O, Rk+l], wE B lEk u Rk+ }
and

-, Ak = (He C(UkE)IHIDk e rk and H(u) = u if Ilul = Rk+l or

U BRk+l\ Rkn k

Now define

(1.56) ck= inf max J(H(u)), kE U.
HEAk uc Uk

Lemma 1.57: Suppose ck> bk - M 2 . Let 6E (0,ck - bk)

and

Ak(6) = {H E AkI J(H)s bk + 6  on Dk}.

Let

(1.58) ck(6 )= Hnf max j(H(u)), k E I.
;HE A k(6)  u E U k

Then ck(6) is a critical value of J .

-17-



Remark 1. 59: Since by (1. 58), (1. 56), and (1. 43), ck(G) > ck > bk

and bk -- m as k-- m by Lemma 1. 46, the existence of a

subsequence of Ck's which satisfy ck > bk then guarantees an

unbounded sequence of critical values of J and hence Theorem 1. 5 As

will be seen shortly, (1. 2) implies that such a sequence of ck' s exists.

For the proof of Lemma 1. 57 we require the following standard

"Deformation Theorem" [14, 19].

Lemma 1. 60: Let JC C(E, R) and satisfy (PS) on AM. Then

if c> M, s> 0, and c is not a critical value of J, there

exists E C (0,T) and T1 c C([0,1] X E, E) such that

10 T(t,u) = u if u J-1 (c-7, c+7)

20 T1((, Ac+e) C Ac

Proof of Iemma 1. 57: Note first that by the definition of bk and Ak,

Ak(6)# . Choose "e= 1(ck bk-6)> 0 If ck( 6 ) isnota

critical value of I, there exists an e and T) as in Lemma 1. 60.

Choose H E Ak( 6 ) such that

(1.61) max J(H(u)) < ck(6) + E

Uk

Consider 11(1, H(u)) c C(Uk, E) . Note that If jjuo = Rk+1  or

u E (BRk+l \B Rk) fn Ek, IJ(H( u)) = J(u) -s 0 so Tl(1,H(u)) = u by

10 of Lemma 1. 60 (since we can assume bk > 0) . Therefore

-18-
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71(1,H)EAk Moreover.on Dk,

via our choice of 6 and 7 Therefore Tj(1, H) = H b bk+ 6

on Dk again b 10 of Lemma 1. 60, Thus T (1, H)E Ak) and

by (1.61) and 20 of Lemma 1. 60,

(1. 62) max J(T(D,H(u))) s bk 6 )
Uk

*:' contrary to the definition of ck(6). Hence ck(6 ) is a critical

value of I.

Remark 1. 63: Note that ck( 6
1) > ck(6

2 ) if 61 S 6.

Now to complete the proof of Theorem 1. 5, by Remark 1. 59, it

suffices to show that if s satisfies (1. 2) and p satisfies

(pl) - (p 4 ), ck = bk is not possible for all large k . Indeed we

have

Lemma 1. 64: If ck = bk for all k - kl, there is a constant

Y = y(k I ) such that

(1. 65) bk S ykL/-

Thus comparing (1. 65) to (1. 47), we see the inequalities

are incompatible if

< n(s -l

But this is precisely condition (1.2) on s . Thus Theorem 1. 5 is

proved.

-19-



Proof of Lemma 1. 64: Let k - k and -> 0. Choose HEAk

such that

(1.66) max J(H(u)) s bk+ s.
uE Uk

let !(u) = H(u) if u e Uk and Ik(u) = -H(-u) if -u E Uk.

Since H is odd and continuous, H is well defined andSince HIBI+ rl Ek

r'k+I .

Therefore

(1.67) hk+l s max J( (u)).Dk+1

But Dk+I= Uk U (-Uk) and by Lemma 1.18 and (1.66),

(1.68) max J ('JH(u)) =bk + s+ l(Ibk + EI / +l) "

- Uk

Thus (1. 67) - (1. 68) imply
1

(1.69) b bkl sbk + E+l(Ibk+6b +l).

Since E > 0 is arbitrary,.A 1

(1.70) bk+l ' bk + P1(lbkj +1)

for all k - ki . An easy induction argument - see e.g. [9] - [10]

- then yields (1. 65) .

Remark 1. 71: An analysis of Theorem 1. 5 shows that by slightly

modifying several of the lemmas, the following result holds:
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Theorem 1. 72: Suppose p satisfies (pl) - (p4 ), f (x, e) satisfies

( Pi),

(fI) (X,)I S a 3 + a41671 0, o a< 

and

(1. 73) In + 2) 2 n )s_ ___
(1.73) n(s -1) . >

Then the equation{Lu = p(x,u)+f(x,u), xc 
(1.74) u= 0 x CxC19

possesses an unbounded sequence of weak solutions .

Theorem 1. 72 generalizes a result of Dong and Li [11] . We wll

not carry out the details.

Remark 1. 75: The question of whether or not the growth restrictions on s

(1. 2) and (1. 73) are essential for these results remains open. In a very

interesting recent work [ 12] , Bahri has given a partial answer. He

proved for

Q-AU u IS ' u+f(x), XE n
(1.76) L

0, x C an

for the full range of s : 1 < s < (n+Z)(n-Z)"1  that there is an open dense

set of f c L2 (n) for which (1.76) possesses an infinite number of

distinct solutions. One knows from an identity of Pohozaev [20] that

-21-
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that even if f 0, the result is false in general if

s -(n+2)(n- 2) "

I-
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.2. The second order Hamiltonian system case.

A re suit analogous to Theorem 1. 5 holds for second order

Hamiltonian systems. Consider such a system:

(2.1) + V'(q) = q)(t)

where q c Rn and V satisfies

(VI) VCI(Rn, R)

(V2) These are constants al, a2 > 0 and v > 2 such that

JV(q) J sa 1 +a 2 qj v  for all q E Rn,

(V3 ) There are constants L > 2 and (7 > 0 such that

0 < pV(q) : q. V(q) for all jqj _ i .

In (V3) and elsewhere p -q denotes the usual inner productF3
of two elements of Rn . As in §1, (V3 ) implies the exdstence

of constants a 3, a 4 , a5 > 0 such that

(2.2) (qV(q)+a3) V(q)+a 4 a..1 qJL forall q E Rn32.2

We assume q (t) is periodic in t . Without loss of generality we

can take the period to be Ir . The functional corresponding to (2.1) is

(2.3) 1(q)=f [;-. Il -V(q)- p.q] dt
0

Hypotheses (V) - (V2 ) imply I E C I (E, R) where now E ( J 2 (S1))

with the norm in E given by
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Hqj f (f41 +jqj )dt.

Our main result is:

Theorem 2.4: Suppose V satisfies (V1) - (V3 ), CP E (L(S1 ))n ,

and

(2.5) v < 4R - 2.

Then I (q) has an unbounded sequence of critical values.

As in § 1, corresponding critical points are weak solutions of (2.1)

and it is easy to show they satisfy (2. 1) a. e. Moreover if p E (C (5)) 

then these weak solutions in fact belong to (C2(S))n .

When q) = 0, it is known that Theorem 2.4 is true solely

under hypotheses (V1) and (V3 ) [8]. A result like Theorem 2.4 has recently

been announced by Bahri and Berestycki [ 13] who further require V e C 2

and in place of (2.5) have the more stringent condition v < 2

Our proof of Theorem 2. 4 closely parallels that of Theorem 1. 5.

Therefore we will be somewhat sketchy in our exposition here.

Lemma 2. 6: If q is a critical value of I, there is a constant a6

depending on cp 1L2 such that
2 ,r 2 r q ) + a d s a

(2.7) f0 (V(q) +a4)dt s 0 a 6 (12(q) +l)l/Z
0

-24-
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Proof: As in Lemma 1. 8

Now we set up a modified problem for (2. 1), Let x, j

be as in S1 (with 1(u) replaced by 1(q) given by (2.3)). let
2wr

0
and set

(2.8) J(q)=f 27r1 412 -V(q)-(q)(p q]dt .
0

Lemma 2. 9: If q4E supp tp, then

(2.10) jf q qdtj +1 j~ I +1)

where a,1  depends on ~jq'

Proof: As in Lemma 1. 13 .

Fo 0 [0,21T), let (T eq)(t) q q(t +e) .

Lemma 2. 11: There is a constant ~l depending on il IL
ZjL

4;such that for all q E E and e c [0, 2w),

(2.12) 1 J(q) - j (Teq)l s Pl( IJ (q)jI1+ 1).

Proof: Observing that Jjq gL2 DT qH~L~2 , the proof is essentially

as in Lemma 1. 18 .
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Lemma 2.13: There are constants M0 a0 > 0 and depending on

" il ilL2 such that whenever M a: MO J(q) - M, and

q e supp Oi, then j(q) -: aOM

, Proof: As in Lemma 1. 25.

Lemma 2,14: There is a constant M >0 such that J(q) - M and

j (q) = 0 implies J(q) = I(q) and I'(q) =0 *

j Proof: As in lemma 1. 29.

Let Ac = {q e Ej J(q) c} .

1
i Lemma 2.15: J E C (E, R) and there exdsts a constant M 2  0 such

that j satisfies (PS) on AM,

Proof: J e C1(E, R) follows from (V1), (V2 ) and the smoothness

and form of . To verify (PS), we argue in a similar fashion to

Lemma 1. 34 . As in (1. 36) with p chosen to satisfy (1. 37),

we get

p! q+K :EfIqI 2 dt+ a - a7 0 qmjl
0 LL

(2.16) 2 I a5

Eoimi + -= 0II mi' - EijqIil " a 7 UIj 2 - a8
L L

Hence using the H8lder and Young inequalities as in (1. 38), we conclude

{q m is uniformly bounded in E. Writing
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2V"
J(qm)Q = (l+Tllqm))f (f2 m( +qm °Q)dt

0
(2.17) 2w

-(l+Tl(qm)) f me Q dt + lower order terms

we see
J'(qm) (1 (+Tl(qm)) qm + p(qm)

where p is compact. Thus the argument of Lemma 1. 34 shows (qm)

has a convergent subsequence and (PS) is satisfied.

As a consequence of Lemma 2.14, in order to prove Theorem 2.4,

it suffices to show J has an unbounded sequence of critical values.

This will be accomplished as in §1 by a comparison argument. Let

el ,•., en denote the usual orthonormal basis in Rn . Define

Vjk (sin Jt)ek and Wjk = (cos Jt)ek for J c I U {0} and

I s k S n . These functions form an orthogonal basis for E . Let

Em = span{vjk , wjk 0 ls Jkm I Sk-si}

where 1 z i :s n. By (2. 2) there exists Rri > 0 such that

if q R Le= We say
Emi mi Rmini °

h E C(Dmi, E) is eguivariant if h(Toq) = TEh(q) for all ee [0,2n] .

Let

(2.18) r' ={he C(D E) h is equivariant and h(q) = q
ki C(kiEh

whenever IjqI = Rki or q e EOn}

Define
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(2.9) inf max J(h~q)
he r k q Dk

Let E ,iI denote the orthogonal complement of E k -

if ij 1 and 0 EL

Lemnma 2,20: For all ke]N, 1si~sn, p<R, and he rki,

!(2.21) h(Dl) 9 l Ei I

-- jProof: The proof of this lemma will be carried out in the Appendix.

ILemma 2. 22: There are constants 13 0 and kE IN such that

for k ko and 1 s i Sn,
v+2

-' (2.23) b ki - 1 n a "( ( )

-.4

Proof If k a- 1 and qe8B E n, <Dl

(.24) II TI S 1 1-

_Ti oand therefore

*(2.25) ill S illi 2

Arguing as in (1. 48) - (1. 49) using (V2  and (2. 25) lead to

i v+ 2

(2.26) j (q) a.q2  v -•a2 -CV
L L

The analogues here of (I. 50) -(1. 51) are
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77

v-2 v+2

(2-27) ilqlL, <-s a 0 q "j q j 13.L

for all q e E and

(2.28) jjqjj k' IRioL 2

for q e , (unless i = 1 in which case k is replaced by

k - 1). Continuing as in Lemma 1. 46 then yields (2.23).

Next to construct critical values of J, let

Uk = {q= rvk, i+, +QlrE [O0,Rk, i+,] " , Q B Rk, i+1 ! kI i:SRk, i+l}

where if i = n, Vk, i+l a Vk+l, I and Rk, i+, = Rk+l, 1. Let

Aki {HE C(UkiE)i HID kC rki and H(q) = q when IqH = Rki I+l,

or q E (BR\k, +,B Rk , I ) f Ekl

and define

cki= inf max J(H (q))
HEAki qE Ukt

Lemma 2. 29: Suppose ck i bki -M 2  Let 6 c (0, c k - bk) and

Aki(6) ={HeAkIlJ(H) sbki+ 6  on D ki}

Set

(2.30) Cki( 6 ) = inf max 1(H (q))
HcAki(6) qcUkt

-29-?,*



I Then cki 6  is a critical value of J

Proof: Essentially as in Lemma 1.57.

Lemma 2. 31: If ck=b i for all k k and I s isn,

*then there exists y = -y(kl) such that

(2.32) bki :SyIL,-

*J

Proof: Let ka:k 1  1 Sisn, F-7 0, and H eAk suchthat

(2.33) max I(H(q)) s bki + So
j I UkI

Let ' (q) = H (q) for q e Uki and H(Teq) = Te H (q) for

q e Ukd. Note that {Te Uki I eE [0,27r] } = Dk i+l and by

construction i19 is equivariant. Moreover since H e C (D d, E),

He C(Dk, 1+1, E) and H(q) = q if Uqi = Rk1+1  Therefore

HE rk+l" Now arguing as in Lemma 1. 64 with Lemma 1. 18 replaced

by Lemma 2. 11, we find

(2.34) b b + ( jbk + 1)

where bk, i+l = bk+l, i if i = n . A slight extension of the

argument of [9] or [10] then yields (2. 32).

The proof of Theorem 2. 4 is now immediate on comparing (2. 32)

to (2. 13) and recalling (2. 5)

-30-
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Remark 2. 35: As in §1,V a more general perturbation than CP may

be permitted using the above arguments. Indeed we have

nn
Theorem 2. 36: If V satisfies (Vl) -(V 3 ) , q(t, q) E C(0, 2r]X R 1 R)

is 2n periodic in t and

I cp(t,q)l :Sa 3 + N jqla

where 0OS Cy< IL and v < 4 jL -2, then the system

~+ V'(q) (p(t)

has an unbounded sequence of (classical) solutions.

We omit the details.
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Appendix

Our goal here is to prove

Lemma 2.20: For all k.e.IN, k&l, lsi sn, p<l arnd

4(2.21) h (D) r) 8B fL

ki ,Appendix

The analogous result in §l, lemma 1.44, was proved with the

I aid of the Borsuk-Ulam Theorem * The proof of Lemma 2. 20 in turn

depends on an S1  version of the Borsuk-Ulam Theorem. In (21], the
*following situation was studied:z Let S act on RX k

via a family of orthogonal transformations such

mthat FixS = R1X{0. For < k we consider Ri tobe

a subspace of RUk via =?- R21  Rl(kJ ) 1R2J X {0} It was

shown in [21] that

1P"

i ad A-1; Let l be abounded invariant neighborhood of 0 in

R I X R 2k and let f E C (BE,1 R Is R2 m where j < k and f

is equivariant. Suppose further that

f, FI is the identity. Then (x e nsid f(x) = 0}
(S X{01)f ri

is nonempty.

Remark: If I =0 and Fix S = , it iseasy to use e. g. the

index theory of [ 15] to prove Lemma .

We will show how to use Lemma A-1 to prove Lemma 2. 20. First the

special case:
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Lemma A-2: Let - {¢ rki Dl(Dki) CE ml for some m and j}o

Then (2.21) holds for all 4> ei.

Proof: Let h e M. Then h (B) is a neighborhood of 0 in
p

Eki. Let 12 be the component of h' 1 ( 8B ) containing 0 . Then

a C D is an invariant neighborhood of 0 in Ek, (i.e. x e Q

implies Tex E U YOE [0,27r)) Let Pk1, P-l denote

respectively the orthogonal projection of E onto EkLl. Eji

respectively. Then Pk, i-I h =- f E C (80, Ek, i-1)  Since Ek, 1-1

is an invariant subspace of E, f is an equivariant map. Note that

E0 n = q EJTeq = q for all c [0,2i)} S

Since h E r, h(q) = q = f(q) on EOn flDki.

With some obvious identifications we have

satisfied the hypotheses of Lemma A-i . Hence f

has a zero Q on 8ll Consequently h(Q) =P; hkQ 1-

8Bp fl Ejl Thus (2. 21) is satisfied.P k, I-1

Now we can give the

Proof of Lemma 2. 20: Let h c rk, and m > k. Then P mh 1'.

By Lemma A-1,

P mih (D kI) n 8Bp n El ~-

-- 33-
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- ~ Therefore there Is a sequence of MIS - and corresponding to

q E Dki such that

(A-2) P h(q )CO 88nE 1L

nd M p k, i-1

Passing to a subsequence if necessary, the compactness of Dki implies

q -* q E D Since

jh (q) - Pmjh (qm)II s 0 h (q) - Pmih (q)1 + Pm(h (q) h(q ))I ~ 0

a s r-M, by (A- 2)

and (Z. 21) is satisfied.
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